Progress of HERD calorimeter

Zhigang Wang
IHEP
On behalf of HERD group
02/12/2013
Outline

1. HERD calorimeter configuration
2. Readout and trigger system of the calorimeter
3. Cosmic ray test of calorimeter prototype
4. Linearity study of image intensifier and ICCD
5. Summary
The HERD calorimeter configuration

The HERD calorimeter is a cubic homogeneous detector, made of LYSO scintillator. It is a 3D imaging calorimeter, used to measure the development of particle shower.

The scintillation light of LYSO is absorbed and transmitted by 0.3 mm diameter wavelength shifting (WLS) fibre glued to the surface of the scintillator.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LYSO Cell length</td>
<td>3.0×3.0×3.0</td>
</tr>
<tr>
<td>Number of LYSO</td>
<td>21×21×21=9261</td>
</tr>
<tr>
<td>Calorimeter Size</td>
<td>63.0×63.0×63.0</td>
</tr>
<tr>
<td>Mass of Calorimeter</td>
<td>1800</td>
</tr>
<tr>
<td>Depth of Calorimeter</td>
<td>55 3.0</td>
</tr>
</tbody>
</table>
One crystal readout by two fibers is designed to cover the whole dynamic range: 2e6. One fiber with several loop spiral defined as low channel, another fiber with no spiral defined as high channel. Cosmic rays were used to test the two channels response to MIPs. Light output of low and high channel (readout by PMT(XP2020)) is about 110 P.E. and 6 P.E. respectively. High energy channel light output need to be decreased to obtain 1000 times difference between the two channels. The linearity requirement of ICCD: 5e3.
Readout system of the calorimeter(2)

There are nearly 20 thousand readout channels, all the fiber ends are bundled in two compact bunch correspond to low and high channel, which has a size of only a couple of centimeters. The fibers at the end of the bundle can be glued together and polished making a “fiber optic plate”-like structure.

The shower development profile of the event in the detector is translated into the surface of the fiber optic plate (FOP). This image on the FOP can be photographed by using an externally triggered ICCD.
One WLS fiber attached to the surfaces of a row of crystals. In total, there are 21X21=441 fibers couple to one PMT. PMT: multi-dynode readout similar to DAMPE, to cover the huge dynamic range.

The trigger signal record energy and time information. When a high energy particle incident, we can get a fast signal (<100 ns) from the PMT that proportional to the particle energy. So a threshold can be set for trigger.
Cosmic ray test of calorimeter prototype(1)

2×2×4 CsI(Na) module
2.5cm × 2.5cm × 2.5cm

24 fibers with number

24 fibers fixed on a micropore plate

Fibers coupled to II through fiber Optical taper

ICCD system and cosmic ray counter

Schematic presentation of cosmic ray test
Cosmic ray test of calorimeter prototype(2)

Display of a typical cosmic muon event passing through six crystals read out by ICCD

Raw signal from CsI(Na) and WLS cell detected by PMT

Energy resolution of MIPs in six crystals

Sigma/Mean = 14% @ 84 MeV

Energy resolution:
- 1 MIP/cm = 5.62 MeV/cm
- 1 MIP for cube 2.5 cm = 14 MeV
- 1 MIP in six crystals = 84 MeV
Linearity study of image intensifier

18mm diameter Image intensifier

LED and quartz fiber

Fitting data from 10 P.E. to 1000 P.E., and then extrapolated the fitted curve to 50000 P.E. The divergence at 20000 P.E. and 50000 P.E. is 20% and 25% respectively.
Linearity study of ICCD prototype

The test setup is identical to the linearity study of image intensifier, one fiber used to test the ICCD, another used to monitor the stability of the LED.

In condition 1, the gain of II is 1.5×10^5, the linearity range of ICCD is 100. In condition 2, the gain of II is 1.0×10^4, the linearity range of ICCD is 300. II with lower gain can obtained larger linearity.

In linearity study of Image Intensifier and ICCD, the PMT’s non-linear response is not exclude, this issue will be studied in future.

See Bingliang-Hu’s talk for details.
Summary

1, The property of scintillator and WLS have been studied.

2, The performance of calorimeter prototype have been tested by cosmic ray.

3, Huge dynamic range is vital to ICCD, this is a real challenge.
Thanks for your attention